Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics.

نویسندگان

  • Yueheng Lan
  • Predrag Cvitanović
چکیده

We undertake an exploration of recurrent patterns in the antisymmetric subspace of the one-dimensional Kuramoto-Sivashinsky system. For a small but already rather "turbulent" system, the long-time dynamics takes place on a low-dimensional invariant manifold. A set of equilibria offers a coarse geometrical partition of this manifold. The Newton descent method enables us to determine numerically a large number of unstable spatiotemporally periodic solutions. The attracting set appears surprisingly thin-its backbone consists of several Smale horseshoe repellers, well approximated by intrinsic local one-dimensional return maps, each with an approximate symbolic dynamics. The dynamics appears decomposable into chaotic dynamics within such local repellers, interspersed by rapid jumps between them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c ha o - dy n / 96 06 01 6 v 1 1 J ul 1 99 6 Hopf ’ s last hope : spatiotemporal chaos in terms of unstable recurrent patterns

Spatiotemporally chaotic dynamics of a Kuramoto-Sivashinsky system is described by means of an infinite hierarchy of its unstable spatiotemporally periodic solutions. An intrinsic parametrization of the corresponding invariant set serves as accurate guide to the high-dimensional dynamics, and the periodic orbit theory yields several global averages characterizing the chaotic dynamics.

متن کامل

Spatiotemporal chaos in terms of unstable recurrent patterns

Spatiotemporally chaotic dynamics of a Kuramoto–Sivashinsky system is described by means of an infinite hierarchy of its unstable spatiotemporally periodic solutions. An intrinsic parametrization of the corresponding invariant set serves as an accurate guide to the highdimensional dynamics, and the periodic orbit theory yields several global averages characterizing the chaotic dynamics. PACS nu...

متن کامل

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Hopf ' s last hope : spatiotemporal chaos in terms ofunstable recurrent

Spatiotemporally chaotic dynamics of a Kuramoto-Sivashinsky system is described by means of an innnite hierarchy of its unstable spatiotemporally periodic solutions. An intrinsic parametrization of the corresponding invariant set serves as accurate guide to the high-dimensional dynamics, and the periodic orbit theory yields several global averages characterizing the chaotic dynamics.

متن کامل

High-dimensional interior crisis in the Kuramoto-Sivashinsky equation.

An investigation of interior crisis of high dimensions in an extended spatiotemporal system exemplified by the Kuramoto-Sivashinsky equation is reported. It is shown that unstable periodic orbits and their associated invariant manifolds in the Poincaré hyperplane can effectively characterize the global bifurcation dynamics of high-dimensional systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 78 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2008